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is a slight perturbation x of x such that g(x) # g(x); that is, x
Is given a different label than x by the classifier.

attack

C is ReColorAdv attack, D is an /. attack, S is StAdv attack
[2]. Attacks are evaluated separately and combined.

Adversarial Threat Models

Perceptibility

L=625

Orig. C D C+D C+S+D

How does one define a "slight perturbation"? A threat model
defines a set of imperceptible transformations for a natural in-
put. We argue that existing threat models do not encompass
the full range of perturbations that are imperceptible.
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Additive (¢,) Threat Model ReColorAdv is a novel adversarial attack against image classifiers that leverages a

functional threat model. ReColorAdv generates adversarial examples by uniformly
perturbing each pixel z; in the input image x with a function f : C — C:
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e The usual threat model used for adversarial examples Combinations of attacks are less perceptible than a single

attack. Above: unbounded attacks against a TRADES-
trained network. Below: empirical evaluation using learned
perceptual image-patch similarity (LPIPS) [4].

Perceptual distance (LPIPS)
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e The norm of all the amounts is bounded, e.g. for the /
norm |[(d1,...,0,) |2 < €

Regularization and Scope

e Perturbation function f(-) is bounded to prevent it from modifying any color by too
large of an amount

Attack strength (error rate)
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Functional Threat Model
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e We propose a new class of threat models for adversarial
attacks called functional threat models
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e PGD with smoothing term encourages similar colors to be perturbed in similar ways L 0.010
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e Works with different color spaces including RGB and CIELUV (perceptually accu-
rate)
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e Can be combined with other attacks such as Carlini and Wagner’s [1] and spatially-
transformed adversarial examples [2]
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e Adversarial examples are generated by applying a single
function f to all features of the input
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Examples on ImageNet

(left-to-right: original, adversarial example, perturbation)

e The uniformity of the perturbation makes the change less
perceptible, allowing for larger absolute modifications
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more potential perturbations than the union of the con-
stituents
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